3D printing Aerodynamic engineering Aeronautical engineering Aeronautical engineering books Airports Architecture Artificial intelligence Automobiles Blast Resistant Design Books Bridges Building Codes Cabin Systems Civil Engineering Codes Concrete Conferences Construction Management Construction Materials Cooling Cryptocurrency Dams Do it Yourself Docks and Harbours Downloads Earthquake Engineering Electronics Engineering Engines Environmental Design & Construction Environmental Engineering Estimation Fluid Mechanics Fluid Mechanics Books Formwork design foundation engineering General Geotech Books Geotechnical Engineering Global Positioning System HVAC Hydraulics Hydraulics Books Hydro Power Hydrology Irrigation Engineering Machinery Magazines Management Books Masonry Mechanical Engineering Mechanics Mechanics Books Miscellaneous Books Modern Steel Construction Nanotechnology Natural Hazards Network Security Engineer Networking Systems News Noise and Attenuation Nuclear Engineering Nuclear Hazards to Buildings Pavement Design Prestressed Concrete Project Management Project Management Books Quantity Survey Quantity Survey Books railways RCC Structural Designing Remote Sensing Remote Sensing and GIS Books Renewable Energy Reports Resume Roads scholarships Smart devices Software Software Engineering Soil Mechanics Solar Energy Special Concrete Spreadsheets Steel Steel Spreadsheets Structural Analyses structures Structures Books Surveying Surveying Books Testing Thermodynamics Thesis Transportation Books Transportation Engineering Tunnel Engineering Wind Energy Zero Energy Buildings

Book: Practical Astronomy for Engineers by Frederick Hanley Seares

The following pages represent the result of several years' experience in presenting to students of engineering the elements of Practical Astronomy. Although the method and the extent of the discussion have been designed to meet the specialized requirements of such students, it is intended that the work shall also serve as an introduction for those who desire a broader knowledge of the subject.

Book: Practical Astronomy for Engineers by Frederick Hanley Seares
The main purpose of the volume is an exposition of the principal methods of determining latitude, azimuth, and time. Generally speaking, the limit of precision is that corresponding to the engineer's transit or the sextant. Though the discussion has thus been somewhat narrowly restricted, an attempt has been made to place before the student the means of acquiring correct and complete notions of the fundamental conceptions of the subject. But these can scarcely be attained without some knowledge of the salient facts of Descriptive Astronomy.

Position is a relative term. We cannot specify the position of any object without referring it, either explicitly or implicitly, to some other object whose location is assumed to be known. The designation of the position of a point on the surface of a sphere is most conveniently accomplished by a reference to two great circles that intersect at right angles. For example, the position of a point on the earth is fixed by referring it to the equator and some meridian as that of Greenwich or Washington. The angular distance of the point from the circles of reference are its coordinates in this case, longitude and latitude.
[blogger]

Author Name

Engineeersdaily

Contact Form

Name

Email *

Message *

Powered by Blogger.