3D printing Aerodynamic engineering Aeronautical engineering Aeronautical engineering books Airports Architecture Artificial intelligence Automobiles Blast Resistant Design Books Bridges Building Codes Cabin Systems Civil Engineering Codes Concrete Conferences Construction Management Construction Materials Cooling Cryptocurrency Dams Do it Yourself Docks and Harbours Downloads Earthquake Engineering Electronics Engineering Engines Environmental Design & Construction Environmental Engineering Estimation Fluid Mechanics Fluid Mechanics Books Formwork design foundation engineering General Geotech Books Geotechnical Engineering Global Positioning System HVAC Hydraulics Hydraulics Books Hydro Power Hydrology Irrigation Engineering Machinery Magazines Management Books Masonry Mechanical Engineering Mechanics Mechanics Books Miscellaneous Books Modern Steel Construction Nanotechnology Natural Hazards Network Security Engineer Networking Systems News Noise and Attenuation Nuclear Engineering Nuclear Hazards to Buildings Pavement Design Prestressed Concrete Project Management Project Management Books Quantity Survey Quantity Survey Books railways RCC Structural Designing Remote Sensing Remote Sensing and GIS Books Renewable Energy Reports Resume Roads scholarships Smart devices Software Software Engineering Soil Mechanics Solar Energy Special Concrete Spreadsheets Steel Steel Spreadsheets Structural Analyses structures Structures Books Surveying Surveying Books Testing Thermodynamics Thesis Transportation Books Transportation Engineering Tunnel Engineering Wind Energy Zero Energy Buildings

Spreadsheet: Bar Bending Schedule of a Box Culvert

Definition of Bar bending

It is the method of bending reinforcing steel into shapes which are important for reinforced concrete construction.

Definition of Bar bending schedule (BBS)


Bar bending schedule alias schedule of bars refers to a list of reinforcement bars, a specified RCC work item that is shown in a tabular form for a smooth view. This table sums up all the necessary particulars of bars ranging from diameter, shape of bending, length of each bent and straight portions, angles of bending, total length of each bar, and number of each type of bar. This information can be used for making an estimate of quantities.
Download: Bar Bending Schedule of a Box Culvert
It includes all the details essential for fabrication of steel like bar mark, bar type and size, number of units, length of a bar, shape code, distance between stirrups (column, plinth, beam) etc.

While generating bar schedules, it is important to take proper care about length. In case of bending, bar length will be raised at the bending positions.

Benefits of the Bar Schedule:


When bar bending schedule is applied along with reinforcement detailed drawing, it makes the quality of construction superior.

Once bar bending schedule is prepared, cutting and bending of reinforcement is performed at factory and shipped to job site. This improves quick implementation at site and minimizes construction time and cost as fewer workers are needed for bar bending. Bar bending also circumvents the wastage of steel reinforcement (5 to 10%) and thus project cost is saved significantly.

It offers the perfect estimation of reinforcement steel requirement for all the structural members which are applied to workout complete reinforcement requirement for whole project.

Bar bending schedule offers the steel quantity requirement in a better way and thus delivers an option to make optimal use of the design in case of cost overflow.

The process becomes simple for site engineers to validate and approve the bar bending and cutting length throughout inspection prior to positioning of concrete with the support of bar bending schedule and thus facilitates in superior quality control.

It becomes easier to handle the reinforcement stock necessary for identified time duration.

It will facilitate the fabrication of R/F with structure.


P.S: Please share this article on social media and elsewhere if you find it useful and do leave your feedback in the comments section below.
[blogger]

Author Name

Engineeersdaily

Contact Form

Name

Email *

Message *

Powered by Blogger.